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Abstract

Geologists and planetary scientists will benefit from

methods for accurate segmentation of rocks in natural

scenes. However, rocks are poorly suited for current visual

segmentation techniques — they exhibit diverse morpholo-

gies and have no uniform property to distinguish them from

background soil. We address this challenge with a novel

detection and segmentation method incorporating features

from multiple scales. These features include local attributes

such as texture, object attributes such as shading and two-

dimensional shape, and scene attributes such as the direc-

tion of illumination. Our method uses a superpixel segmen-

tation followed by region-merging to search for the most

probable groups of superpixels. A learned model of rock

appearances identifies whole rocks by scoring candidate su-

perpixel groupings. We evaluate our method’s performance

on representative images from the Mars Exploration Rover

catalog.

1. Introduction

Planetary rovers like those on Mars today can collect

more data than can be analyzed in mission-relevant time

frames; they have usually moved on before their images of a

site are thoroughly analyzed. The Mars Exploration Rovers

Spirit and Opportunity have already accumulated a catalog

of hundreds of thousands of images. Future rovers will have

even greater mobility and lifespan; missions could cover

kilometers every day [1] and last for years. These missions

traverse vast areas and collect diverse images of the plane-

tary surface. However, improved exploration speed and ef-

ficiency will reduce the time window for any data analysis

that is pertinent to the ongoing exploration.

The identification of observed rocks is an important task

in route planning and geologic analysis. Rock shape, weath-

ering, and dispersion carry important information about en-

vironmental characteristics and processes. Currently these

attributes are characterized by a person who manually labels

the rocks in an image. Comprehensive analyses of this sort

Figure 1. Rocks’ diverse textures, variable morphologies, and di-

rectional illumination all complicate the segmentation problem.

Local cues are insufficient: real borders are often weak (a), while

the rocks themselves are non-uniform with false interior borders

(b). Image from the Mars Exploration Rover “Spirit,” courtesy of

NASA/JPL.

are usually too time-consuming to be practical. When the

analysis is performed at all, it is too late to inform mission

planning decisions. An automated method for identifying

rocks in images would allow automatic extraction of geo-

logic information [2] by enabling the real-time calculation

of rock size, shape and class distributions [3]. More rapid

and accurate rock analysis would support immediate tacti-

cal and scientific decision-making.

Previous research has produced several automated al-

gorithms for finding rocks, including template-based ap-

proaches [4], stereo geometry [5, 2], finding closed contours

with an edge detector [6], and classifying homogeneous re-

gions with a belief network [7]. These algorithms can de-

tect rocks but seldom find their actual boundary contours

[4]. This is unfortunate because an accurate segmentation

is usually required for estimating rocks’ geologic attributes.

Segmenting rocks is difficult because they are non-

uniform: their texture, color and albedo varies across their

surfaces and from one rock to the next. Often Mars im-
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ages exhibit strong directional lighting with cast shadows

and highlights that violate the uniformity assumption. Weak

boundary edges must be inferred from context (Figure 1).

Recent work in simultaneous segmentation and recog-

nition has tried to reduce reliance on local features [8, 9].

These methods exploit 2D geometric structure to assem-

ble heterogeneous parts into likely objects. Unfortunately,

rocks exhibit infinite morphological variation with little

common structure. Their appearance can vary greatly with

respect to both shape and lighting conditions. Thus, rocks

constitute a significant pattern recognition challenge: nei-

ther local properties nor global structures alone are suffi-

cient.

This work proposes a new segmentation method that ex-

ploits multi-scale cues simultaneously. It aims for a seg-

mentation that is consistent with local features such as tex-

ture, object features such as shape and shading, and scene

features such as the direction of illumination.

We next describe the algorithm and then demonstrate its

performance on a sample dataset from the Mars Exploration

Rover catalog.

2. Approach

Our rock identification method fragments the source im-

age using a normalized-cuts strategy [8, 10] and merges

the resulting fragments, or superpixels [10], into candidate

rock regions (Figure 2). A search process identifies high-

probability superpixel groupings where labels are most con-

sistent with the local and global features of our rock model.

The search evaluates each possible segmentation of can-

didate regions using a learned model trained to recognize

rocks and soil under directional lighting.

2.1. Creating Superpixels

An initial over-segmentation fragments the image into a

set of superpixels— areas of homogeneous properties that

become the atomic elements of the search [10]. The use

of superpixels instead of image pixels reduces the space of

possible segmentations while still ensuring that some valid

segmentation captures the contours of all rocks. Ideally, we

desire to identify the borders of all rocks using as few su-

perpixels as possible.

We evaluated several approaches for producing super-

pixels, including mean shift [11], Blobworld [12] and

graph-based [13] methods. The method of Mori used in

[8] and [14] achieved the best qualitative results, accurately

capturing the boundaries of rocks with the fewest superpix-

els. This method uses normalized cuts [15] with a boundary

detector [16] to provide a contour grouping cue. In order to

capture many sizes of rocks, we compute superpixel frag-

ments at four different scales (Figure 2).

Figure 2. Rock segmentation by merging superpixels. Texture cues

provide an initial guess of rocks’ locations. Then a search process

evaluates candidate segmentations using texture, shape and shad-

ing features.

2.2. Modeling Rocks

Our method assembles rocks from one or more superpix-

els that form a contiguous region in the image. In order to

identify quality segmentations, we learn a mapping from an

image region’s features to the probability that the region is

actually a rock. Many of the features we consider for this

application are similar to those used in region merging by

Mori [8]. A brief description of the feature set follows.

2.2.1 Shape

Rocks have very irregular shapes; no two exhibit exactly the

same morphology. However, their shapes are recognizably

different from a randomly generated region. They tend to

be more ellipsoidal and convex than random groupings of

superpixels. Dunlop provides a comprehensive overview of

these shape measures and their utility in describing rocks

[3].

We characterize each region with several shape at-

tributes. First, we calculate the residual error between the

rock region’s contour and its corresponding best-fit ellipse

[2]. We use two measures of convexity based on the con-

vex hull of the region’s pixels: the ratio of the convex hull



perimeter to the actual perimeter of the rock, and the ratio

of the convex hull area to the rock’s true area [17]. Finally,

we consider the region’s circularity, defined as the square of

its perimeter divided by its area [18].
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Figure 3. Two shape features distinguish rock regions and altered

rock regions in a training image. The plot shows ellipse fit error

and convex hull (area) features.

Figure 3 illustrates the ability of two shape features to

discriminate between rock and non-rock regions in a train-

ing set. We generate non-rock regions by altering a true

rock’s border through random addition and subtraction of

1 − 3 superpixels. To ensure that the change was signifi-
cant, we restrict the training set to those regions whose area

differs from their base rocks by at least 50%. The figure
suggests that random perturbations tend to increase both the

convexity and ellipse-fit error of a rock region.

2.2.2 Texture

Our texture measure uses the method of Varma and Zisser-

man [19]. We convolve all images in a training set with

the Maximum Response 8 filter bank. This results in an 8-

dimensional response vector for each pixel. We aggregate

the responses for several training images and cluster them

using k-means to form a set of 16 universal textons. We use
these textons to compute a texton map for each novel image

by assigning pixels to their Euclidean-nearest texton.
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Figure 4. Separability of the true rocks and altered rocks using

texture features.

Two texture measures appear in the final feature vector.

The first is an area-normalized histogram giving the fre-

quency of occurrence for each of the 16 textons. The sec-
ond is a χ2 distance measure between the texton histogram

of the interior region and the texton histogram of its local

neighborhood. We define the neighborhood of a region to

be its bounding box plus a small margin, excluding the re-

gion itself. These attributes provide both a measure of the

region’s texture and the degree to which its texture differs

from that of neighboring regions.

Texture attributes for the true rocks and altered rock re-

gions appear in Figure 4. We use Principal Component

Analysis, projecting the 16-dimensional texton histogram
onto its first principal component for visualization. Rocks

are characterized by large texture differences with their

local neighborhood; altering their boundaries drives them

quickly toward the typical texton distribution.

2.2.3 Shading

Our shading measure exploits several unique features of the

Mars problem domain. First, an accurate estimate of sun

direction is available for each image in the catalog — the

illumination direction can be observed directly using an on-

board sensor or calculated from rover pose and ephemeris

data. Additionally, rocks on the Martian surface are gen-

erally Lambertian. This makes them amenable to the clas-

sic shape-from-shading reflectance formula [20]. However,

shape-from-shading techniques generally perform poorly

on non-synthetic data [20]. Mars imagery, in particular,

contains plentiful cast shadows and a range of rock mor-

phologies that make it difficult to constrain the space of pos-

sible surface reconstructions.
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Figure 5. Intensity gradients of the rock and altered rock regions.

Fortunately, scoring a candidate region does not require

a full 3D reconstruction. The decision boundary separating

rock shading patterns from non-rock shading patterns is far

simpler than a general model of 3D rock shapes. Rocks pro-

trude above the soil surface; for a given illumination, their

surfaces show a common shading gradient with highlights

on one side and shadows on the other. We characterize this

phenomenon with a four-dimensional shading measure: the

azimuth and elevation of the sun in the camera frame, and

the 2D intensity gradient on the rock’s surface.

We find the intensity gradient using linear least-squares

regression applied to rock pixel intensities. Figure 5 shows

intensity gradients for a single image, where the true rocks

exhibit a high-strength gradient in the direction of illumi-



nation. Conversely, altered rocks trend toward a zero mean

intensity gradient.

2.3. Searching Segmentations

Each candidate segmentation defines a set of rock re-

gions in the image. For our purposes, every pixel not

belonging to some rock is considered to be soil. Thus,

each segmentation determines a set of rock regions X =
{x1, x2 . . . , xn} and soil pixels Y = {y1, y2, . . . , yn}. A
segmentation’s score depends on how well these match the

learned appearances of actual rocks and soil.

We generate class probabilities using two Support Vec-

tor Machine (SVM) classifiers with radial basis kernel

functions [21]. The rock SVM uses the complete 26-
dimensional feature vector describing both local and global

properties of the region. It learns the mapping from this fea-

ture vector to the probability Pr(xi) that a region is a rock.
The soil SVM produces an estimate Ps(yi) that each

pixel is soil. It generates these probabilities independently

for each superpixel using local texture histograms alone.

Averaging soil probabilities across different scales of su-

perpixels yields a value Pn(yi) for each image pixel.
In addition to its role in scoring candidate segmenta-

tions, the soil classifier acts as a heuristic for initializing

the search procedure. The space of possible rock regions is

too large for an exhaustive search. Under these conditions,

data-driven heuristics that favor more probable superpixel

groupings can dramatically improve performance [9]. We

group superpixels with a low probability of being soil into

contiguous regions that become rocks for the first round of

search (Figure 2). This initial guess based on texture dra-

matically improves performance.

The search procedure seeks higher-scoring segmenta-

tions by modifying rock regions in one of four ways: (1)

Growing the rock by adding a superpixel at some scale;

(2) Shrinking the rock by subtracting a superpixel at some

scale; (3) Splitting the rock by removing a superpixel to

make a new rock region; and (4) Merging two contigu-

ous rock regions into a larger rock region. This search

procedure generates regions that could not have been con-

structed using superpixels from a single scale exclusively.

The search seeks a segmentation that maximizes the fol-

lowing objective function:

f(X,Y ) =
∑

xi∈X

A(xi)Pr(xi) +
∑

yi∈Y

Pn(yi) (1)

where A(x) is the pixel area of a rock region. Rock and soil
areas are zero-sum so the two models compete to explain

the scene. During the search we recompute the objective

function following each modification.

For the datasets in this work, a hill-climbing search

provides a fast, reasonable solution. This search strategy

evaluates all possible modifications to a rock, chooses the

highest-scoring alternative at each iteration, and terminates

after a small fixed number of iterations. At the end of the

search procedure we erase rock regions whose probabili-

ties do not exceed some fixed threshold; and any remain-

ing rocks constitute the final segmentation. We employ this

greedy method exclusively in the experiments that follow.

3. Experiments

We have conducted experimental analysis of our multi-

scale segmentation method using images of the Martian

planetary surface. Here we determine the detection accu-

racy, compare the value of individual features, and measure

the error in boundary localization.

Figure 6. Detected rocks.

3.1. Procedure

The experiments detailed in this section involved images

drawn from the Spirit Mars Rover Panoramic Camera im-

age catalog at various locations along its traverse path in

Gusev Crater. This study is restricted to near-field images

of the terrain directly in front of the rover. We favored these



downward-looking images for two reasons. First, for uni-

form distributions of rocks, near-field scenes appeared less

cluttered due to a lack of foreshortening. Second, near-field

rocks contained a larger number of pixels for computing

texture and shading statistics. Further studies of Mars im-

ages will consider other scene types.

Our training set consisted of 150 hand-labeled images,

each 256 × 256 pixels, that together contained over 500
appropriately-sized Mars rocks under different illumina-

tions. A human created the training set by manually out-

lining all rocks with an area greater than 100 pixels (the ap-

proximate area of the smallest superpixels in our segmenta-

tion). We produce negative examples by randomly altering

the borders of the hand-labeled rocks as described in sec-

tion 2.2.1. We analyzed performance using “leave one out”

cross validation on the image set.

Creating multi-scale superpixel segmentations for each

image was the most computationally-intensive portion of

the algorithm, taking several days to compute for the whole

data set. The search process for each image required sev-

eral minutes of processing time on a single-core 3.2 GHz

desktop computer. Figure 6 shows some examples of rocks

detected in this data set. The following sections provide a

quantitative performance evaluation.

3.2. Performance Results

Here we investigate a variety of system performance

measures. First we consider the influence of individual fea-

tures on region labeling accuracy. Then we perform a more

formal evaluation on segmentation performance for a sam-

ple set of Mars images.

3.2.1 Feature Comparison

The Venn diagram of Figure 7 shows the influence of shape

and shading features on rock-labeling accuracy. We trained

the SVM for each set of training features and assessed its

accuracy in predicting rock versus non-rock regions. A

grid search over training parameter values identified opti-

mal training parameters for each feature subset.

The multi-scale features together achieve 97.3% labeling

accuracy; this combination is significantly better than for

any one or even any pair of attribute sets. The accuracy

percentages of this diagram suggest that all feature vectors

contribute to the final performance result.

The impact of global features is also apparent in the seg-

mentation. Figure 8 shows two segmentations of the same

image using only texture features (left) and the entire fea-

ture set (right). Global features appear to improve boundary

localization; the contextual cues like shape become signif-

icant when choosing between two very similar alternative

segmentations.

Figure 7. Labeling accuracy for different attribute sets. The None

feature corresponds to a blind policy that always chooses the most

frequent class.

Figure 8. Typical segmentation result using local texture features

(left) and the entire feature set (right). Global features like shape

provide important cues to localize rock boundaries.

3.2.2 Rock Detection Accuracy

Previous work has used several different performance mea-

sures for rock detection and segmentation [7, 4]. We employ

an “area of overlap criterion” to reject detections whose bor-

ders do not accurately match those of the true rock. We

match detections to their most similar true rocks; success-

ful detections are those whose intersection area constitutes

50% or more of their union.

We generate precision and recall scores by varying the

confidence threshold for preserving rocks in the final seg-

mentation; this value can be tuned to induce high-precision

or high-recall behavior. The precision is the percentage

of true rocks among candidate segmented rocks, while the

recall is the percentage of rocks segmented from the to-

tal actually present in the scene. The confidence threshold

only matters for accurately-segmented rocks; many rocks

are never recovered during the segmentation process so no

threshold setting ever achieves full recall. We ignore rocks

adjacent to the image border to avoid counting partial rocks

whose true attributes cannot be determined due to crop-

ping. We also discount any detections contained within

these border-adjacent rocks.

Figure 9 shows the precision and recall scores for a test

set of 56 images containing over 230 rocks. There are rel-
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Figure 9. Precision and recall for rock detection using different

confidence threshold values. The recall values appearing in the

figure are the highest reached under any confidence threshold for

this test set.

Figure 10. The effect of the configuration search on rock segmen-

tation results. The initial segmentation (left) loses rocks whose

probabilities fall below the confidence threshold. The search pro-

cess recovers their boundaries and improves their score (right).

atively few rocks per image, so performance varies signifi-

cantly from one image to the next. The standard deviation

for search performance generally ranges between 0.2 and
0.3 for both recall and precision. Nevertheless, the test sug-
gests that the segmentation search provides a modest im-

provement in both precision and recall. This corroborates

visual evidence that the configuration search improves the

fidelity of the segmentation (Figure 10).

3.2.3 Boundary Localization Accuracy

The Chamfer distance measures how closely the detected

rock borders match the actual rock borders [3]. This value is

the average distance from a detected region boundary pixel

to the closest boundary pixel on the real rock region. The

results of this performance measure appear in Figure 11.

Only shape matches from successful detections are shown.

For this data set the search procedure provides no appar-

ent advantage for boundary localization beyond that which
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Figure 11. Chamfer distance boundary localization score for a

fixed confidence threshold.

Figure 12. Two failure modes: large rocks (left) and structured soil

(right).

is required to detect the rocks in the first place. In other

words, the search increases the number of rocks that are dis-

covered but it does not improve their boundary localization

accuracy.

4. Discussion

Several scene factors influenced the quality of result-

ing detections. Figure 12 shows some examples of failure

modes. Large rocks are rare in the training set; the method

often splits them into pieces or fails to find them altogether.

The greedy search cannot find the largest rocks; these re-

quire many superpixel additions. Such piecemeal construc-

tion involves short-term sacrifice— a non-ellipsoidal shape,

for example — that the hill-climbing approach avoids.

Structured soil also proved difficult to disambiguate. The

rightmost image shows soil that has been compressed by

the rover’s wheel; there are no rocks in the image but the

system returns several false positives due to spurious shad-

ows and patches of unusual texture.

Despite these obstacles, our multi-scale segmentation

technique provides promising results for object identifica-

tion in natural scenes. Our work draws together a wide



range of recent advances in object recognition, including

superpixel representations, texton analysis, and simultane-

ous segmentation and recognition. We demonstrate the ap-

plicability of these ideas to the difficult problem of rock

detection and segmentation. Rocks in Mars images have

the unique challenges of directional lighting, variable ob-

ject morphology and weak local cues. We have shown how

such objects can be segmented by combining local, object-

level and scene-level features in a multi-scale technique.

There are several avenues for future development of

this work. A long-term goal of automatic geologic anal-

ysis is a system that could operate onboard a rover for

autonomous science decision making. This algorithm is

too computationally-intensive for onboard applications, but

faster methods may exist. Texture characterization by tex-

ton analysis is currently very common; however, there are

many different types of filter banks and analysis methods

that could be used and a more detailed examination is desir-

able. The superpixel segmentation used here was selected

after a qualitative comparison with others readily available;

a more thorough analysis of different segmentation methods

may also be appropriate.
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